“到2050年,要让AI凭自己的科研成果拿下诺贝尔奖!”
索尼计算机科学实验室首席执行官北野弘明博士,为了开发匹敌顶尖科学家头脑的AI,提出了诺贝尔图灵挑战计划。
这是一次人工智能与自然科学领域的梦幻联动。
人类的力量太有限了,那就创造出AI来替人类实现无限可能。
“当AI强大到能处理复杂现象时,就有机会探索人类科学家当下无法理解的事物。”
他们计划,将AI的算力优势应用于无穷的科学发现中,利用强大的信息处理能力,帮助人类进行科学发现,找到新的研究突破。
和人类相比,人工智能拥有的算力,可以实现对多领域、庞大信息量的快速处理,这远远超出人类对信息的处理能力。
而人类科学家常常会局限在个体的知识范围内,所以在科学探索中,存在一定的劣势。
科学探索就是不断试错的过程,一些突破性的重大发现,往往来源于“失误”。
比如导电聚合物聚乙炔薄膜,它诞生于一次实验失误,合成过程中错误地使用了比正常浓度高一千倍的催化剂。
人类科学家不会去做这种超出常理的实验,而这样的设计却可能被AI实现。
看似关系不大的领域,背后的联系却可以借助AI来抽丝剥茧,扩展更丰富的科学假设。
对这些假设的验证筛选,同样离不开机器学习训练。
基于AI科学家的已有发现不断探索假设空间,生成详细的证明或论据,以评估新生成假设的有效性和重要性。在这样的假设验证过程中,AI不断进行着自我强化学习。
比如已经被成功应用到实际场景中的AI工具Adam-Eve,就在酵母基因组学和药物开发领域发挥了重要作用。
Adam成功预测了酵母菌新功能,找到了芽殖酵母中的孤儿酶;Eve则发现了三氯生成分可以靶向抑制DHFR酶来治疗疟疾。
当然,现在AI科学家最受质疑的,就是其本身的“黑盒”特性。
为了让科学AI系统建立并维持可信度,就要避免黑盒效应,消除数据偏见。
“要让AI做出的科学发现被科学界接受,就必须拥有令人信服的证据,和背后逻辑清晰的推理。”
类似Adam-Eve这类闭环实验室自动化系统,AI能够在人类具体的指令中,完成复杂的实验,以高效的机器处理取代人类低效的实验步骤。
例如,借助AlphaFold预测蛋白质结构,仅仅一周时间就预测出了98.5%的人类蛋白质。大大加速了蛋白质组学的研究进程。
而利物浦大学的“移动化学家”,则具备了自主发现高活性催化剂的能力。
北野弘明对AI科学家未来的发展方向做出大胆假设。随着系统自主性的提高,人类的指令将变得抽象,AI科学家对要测试的假设以及要执行实验的优先级独立决策。
理想中的AI科学系统,是一个结合了软件工具、数据访问和嵌入闭环实验体系的多重多智能体系统,具有高度交互性、互用性和可扩展性。
构成它的多个AI系统专注于各自领域,能够更广泛地探索假设空间,将独立领域互相结合起来。
关于AI科学家,另一个引起社会关注的话题,就是伦理问题。
整个发展阶段中,AI可以一直作为工具被人类应用。但是随着AI自治程度的不断提高,人类更多地充当起监督者的角色,以防止系统被滥用。当然也可以允许AI高度自治,以产生更有突破性的科学假设。
AI参与到科学研究领域中,对于科研成果的归属界定,同样也是需要严肃对待的社会问题。
DABUS“人工神经系统”的开发者曾为其申请专利权,欧英美专利机构均以“不是自然人”为由驳回申请。然而近期澳大利亚法院开创先例,做出裁决,承认了DABUS系统的专利发明人身份。
随着人工智能的不断发展,相应的社会规则也应当逐步完善,为AI科学家提供适宜的社会环境。不过,在对人类做出极大贡献的科学研究面前,发明者是人类或是AI,似乎都不是十分重要的事了。
[1] https://www.engadget.com/sonys-head-of-ai-research-wants-to-build-robots-that-can-win-a-nobel-prize-180059012.html?guccounter=1
[2] https://www.nobelprize.org/prizes/chemistry/2000/shirakawa/biographical/
[3] https://ui.adsabs.harvard.edu/abs/2017APS..MARX49001K/abstract
[4] https://hdsr.mitpress.mit.edu/pub/f9kuryi8/release/6
[5]https://www.abc.net.au/news/2021-08-01/historic-decision-allows-ai-to-be-recognised-as-an-inventor/100339264
[1] https://www.nature.com/articles/s41540-021-00189-3
[2]https://www.nature.com/articles/s41586-021-03828-1
[3] https://www.nature.com/articles/s41586-020-2442-2
本文来自微信公众号“量子位”(ID:QbitAI),作者:关注前沿科技,36氪经授权发布。
相关推荐
索尼AI CEO:我们要让AI在30年内拿到诺贝尔奖
从危险品到为智能手机续命,这个最伟大的发明终于拿到了诺贝尔奖
索尼宣布成立AI事业部,以激发人类创造力为使命
自动驾驶36人 | 文远知行CEO韩旭:我们希望在未来2-3年内会有一个盈利点
潮科技 | 索尼发布全球首款具有AI处理功能的智能视觉传感器
2020,索尼求变
AI“读心术”
AI赛道如何突围?我们请来阿里、投资人、创业公司CEO一起聊了聊
AI不能“取代”医生给我们看病,这并不是因为AI不够强大
新书《Human Compatible》书评:AI与我们的未来
网址: 索尼AI CEO:我们要让AI在30年内拿到诺贝尔奖 http://m.xishuta.com/newsview50414.html